

CO₂ Enhanced Storage (CO2ES) An industrial Chair about CO₂ Storage Fabrizio CROCCOLO

UniMi Physics Department Seminar – February 10th, 2022

Roberto **CERBINO** Uni-Wien (AT)

Marta **COSENTINO** Industry (IT)

Fabrizio **Pietro** Doriano CROCCOLO **BROGIOLI CICUTA** Uni-Pau (FR) Uni-Bremen Uni-Cambridge (DE) (UK)

INDUSTRIAL CHAIR CO₂ES

Chaire CO2ES Dirigée par Fabrizio Croccolo Professeur au LFCR

La chaire industrielle CO,ES a pour objectif d'améliorer la compréhension des différents mécanismes de piégeage du CO, dans les réservoirs géologiques.

IPCC Special report – Global warming of 1.5°C (2018)

CARBON CAPTURE TRANSPORT & STORAGE

European Comission, DG TREN

NORTHERN LIGHTS

CARBON CAPTURE TRANSPORT & STORAGE

mineral trapping

solubility trapping Emami-Meybodi et al. (2015))

11

្រា

cnrs

OPPLO

-2

CO2ES

CO,

STATE-OF-THE-ART

cnrs

-Ser

CENTRE NATIONAL DEFUDES SPATIALES

Hele-Shaw cell

- Quasi-2D
- Mimics a porous medium
- Rayleigh-Darcy regime
- Atmospheric pressures

Alipour et al. (2020)

STATE-OF-THE-ART

 $\delta \rho \rightarrow \delta n \rightarrow$ Intensity variations

EXPERIMENTAL SET-UP

PRELIMINARY ANALYSIS

 $p_0 = 0.1 \text{ MPa}$ $p_{eq} = 2.1 \text{ MPa}$ Pure water

Hele-Shaw like configuration

Transversal observation

FREE DIFFUSION OF SALT MIXTURES

0

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

C / (mol.L⁻¹)

Initial conditions

$$(z, 0) = \begin{cases} C_1, & 0 < z < a \\ C_2, & a < z < h \end{cases}$$

$$C_{mean} = (C_1 + C_2) / 2 \qquad \Delta C = C_1 - C_2$$

 $t/\tau d = 0$ - 🗕 – t/τd = 0.2 _____t/τd = 0.6

 $- - t/\tau d = 1$

3.2 3.4 3.6 3.8 4

 $-t/\tau d = 5$

DIFFUSION CELL & SHADOWGRAPH SET-UP

Fusion 4000 independent dual-channel infusion and withdrawl syringe pump from Chemyx.

DIFFERENTIAL DYNAMIC ALGORITHM

Free diffusion experiment of NaCl into water (C = 2.7 mol.L⁻¹ and Δ C = 2 mol.L⁻¹).

DYNAMIC ANALYSIS METHOD OF C-NEFS

Fitting the SFs in the wave number range from 30 to 500 cm^{-1}

Decay times of the c-NEFs as a function of the wave numbers and time after closing the inlet/outlet valves for the free-diffusion experiment :NaCl/water at C = 2.7 mol.L⁻¹, $\Delta C = 2$ mol.L⁻¹ and T=25 °C.

RESULTS: MEASUREMENTS OF D SALTS IN WATER

SUPERIMPOSITION OF TWO AQUEOUS LAYERS OF NON-REACTIVE SALTS (OBSERVATIONS PARALLEL TO THE GRAVITY)

moments after closing the valves

SUPERIMPOSITION OF TWO AQUEOUS LAYERS OF REACTIVE SALTS: (OBSERVATIONS PARALLEL TO THE GRAVITY)

SUPERIMPOSITION OF TWO AQUEOUS LAYERS OF REACTIVE SALTS (OBSERVATIONS PARALLEL TO THE GRAVITY) : IMPACT OF $\Delta \top$

Henri A BATALLER Ass. Pr.

Ange Tatiana NDJAKA PhD and postdoc

Rizwan MINHAS stage MS

NUMERICAL SIMULATIONS AT BASIN SCALE

Brahim AMAZIANE Ass. Pr.

Nicolas PILLARDOU PhD

GRADFLEX – FOTON M3 (2007)

Vailati et al. (2011) Croccolo et al. (2016)

CO2EX – PARABOLIC FLIGHT (2019 AND 2020)

ា

C. Giraudet et al. To be submitted

PhD

Cédric GIRAUDET postdoc

Paul Mohammed FRUTON CRAGA PhD and postdoc

Emma LISOIR stage BS

GIANT FLUCTUATIONS – ISS (2025 - 2028)

Giant Fluctuations, ISS, 2024

A Vailati et al. Microgravity Sci. and Technol. (2020)

Dan Esli BOUYOU BOUYOU PhD

Mohammed

CRAGA

PhD

Stefano

Mathilde CASTELLINI SAN visiting PhD BAUDELIO stage BS

THANK YOU! QUESTIONS?

